

Sampling of Potentially Explosive Contaminated Soils Utilizing Remote Direct Push Technology

Siva Sivalingam, Ph.D (Shaw); Paul Lear, Ph.D (Shaw); Kevin Neal, CHMM (Shaw); Robert Elder, PG (Shaw); Ian Sangster (Shaw); Charles Colbert, P.E, CIH (USACE); Timothy Shepard, Ph.D (USACE); Bill Wilson (PSA Environmental)

Sunflower Army Ammunition Plant

- 9,063 acres acquired near DeSoto, KS in 1941
- Used by the U.S. Army to manufacture propellants
- Declared excess to the U.S. Army's needs in 1997
- Decontamination/Demolition/Remediation required for approx. 2,824 acres
- State of Kansas is considering mixed use, general development of the site

Propellant Manufacturing at SFAAP

- Mitroglyerine (NG)
- Nitrocellulose (NC)
- Nitroguanidine (NQ)
- Solvent-less double based propellants for rockets
- Solvent single base, double base, and triple base propellants for small arms and cannon
- Solvent double base rocket propellants
- Base grain for casting propellants

Propellant Manufacturing at SFAAP

- Years of Production
 - NC 1943-1960, 1965-1971
 - NG 1943-1948, 1951-1960, 1965-1971
 - NQ 1984-1992
 - Propellants 1943-1948,1951-1960, 1965-1971

Propellant Production at SFAAP

N-5 propellant is an example

 a mixture of nitroglycerine, nitrocellulose, diethylphthalate, 2dinitrophenylamine, lead 2-ethylhexoate, lead salicylate, and candelilla wax)

Propellant Production at SFAAP

The N-5 was rolled into sheets and extruded into solid propellant grains

Propellant Production at SFAAP

- Production plant washdown water, containing N-5 propellant paste and chips were discharged into ditches and settling ponds
- Excess propellant materials from manufacturing and finishing taken to the Burn Area (SWMU 22)

NG Production

- NG was produced at SFAAP by reacting glycerin with nitric/sulfuric acid
- The NG was separated from the acid and washed/neutralized to remove excess acid

NG Production

- The water used to wash/neutralize the NG was collected and any residual NG allowed to settle out prior to discharge of the water into drains and surface ditches
- This NG was collected for disposal

NG Production

Nitroglycerine Slums

- Waste NG from the bottom of the wash water tanks was collected daily
- 11.25 lbs. triacitin or diesel was mixed with 3.75 lbs. NG, then sawdust added until no free liquid
- NG slums are containerized in bags and transported to Burn Area
- At open burn area, bags are inspected to ensure no free liquids and placed in nitroglycerine slums dumping/burning area

Burn Area (SWMU 22)

A 30-acre site

Shavy The Shaw Group Inc.

- 6 burning cells (9 acres)
- An explosive waste staging area
- A NG slums dumping/burning area
- Final destruction area for all propellant-based wastes generated on plant from 1943 to 1980
- Requires remediation of metals and explosives; sampling required to determine extent of remediation

Sampling of the NG Slums Dumping Area

- Remote sampling where concentrations of NG are expected to be the greatest
- Field screening using EnSys field test kits to determine if propellant contamination levels are less than 10 percent by volume
- If greater than 10%, field activities would be halted
- If less than 10%, non-remote sampling will be performed.

Why Remote Sampling?

- Radford Army Ammunition Plant had an explosion in their NG Slums Burning Area
- Probable cause was pooling of NG within the soil
- Potential existed for NG pooling at SFAAP
- Recommendation from Army and USACE personnel was that a 500-foot buffer zone be utilized from the drill rig

Remote DPT Rig

- Standard tracked Geoprobe rig
- Operator can remotely start and operate
- Modified to automatically slice acetate sleeve

Remote DPT Rig

- "Video game"-like operation
- Camera and transmitter located near DPT rig
- Receiver and television located400 feet away

Remote DPT Drilling

- Drilled 4 holes down to bedrock (approximately 18-20 feet)
- Total of 20 4-foot cores
- No detonations or deflagrations occurred

On-Site Analysis

- Real-time analysis in a mobile laboratory trailer
- EnSys field test kits for nitrated explosives
 - Extraction in acetone
 - Color development with NitriVer powder
 - Measure absorbance in spectrophotometer
- XRF analysis for lead
 - Dry soil on hot plate
 - Screen soil and compact in sample cup
 - Measure lead in Niton XRF

On-Site Analysis

- Highest NG concentration found was near 300 mg/kg
 - Well below 100,000 mg/kg (10% by volume)
- Lead levels were less than 400 mg/kg

Summary

- Sampling of the NG Slums Burning Area required to determine extent of contamination
- Potential presence of NG at explosive levels mandated remote sampling
- Remote DPT sampling rig allowed remote sampling without incident
- On-site analysis determined that NG and lead contamination in the NG Slums Burning Area was minimal

